Tuesday, October 16, 2007


In non-scientific use, the term sugar refers to sucrose (also called "table sugar" or "saccharose") — a white crystalline solid disaccharide. Humans most commonly use sucrose as their sugar of choice for altering the flavor and properties (such as mouthfeel, preservation, and texture) of beverages and food. Commercially-produced table sugar comes either from sugar-cane or from sugar-beet. Manufacturing and preparing food may involve other sugars, including palm sugar and fructose, generally obtained from fruit.
In this informal sense, the word "sugar" principally refers to crystalline sugars; but a great many foods exist which principally contain sugar: these generally appear as syrups, or have specific names such as "honey" or "molasses". Many of these comprise mostly sugar; and sugar may dissolve in water to form a syrup.
Scientifically, sugar refers to any monosaccharide or disaccharide. Monosaccharides (also called "simple sugars"), such as glucose, store chemical energy which biological cells convert to other types of energy.
Under an optical microscope at low power, sugar will look like a bunch of messy shapes scattered about. It will feature fragments and pieces sticking out from one another, differing in size and in shape.
In a list of ingredients, any word that ends with "ose" will likely denote a sugar. Sometimes such words may also refer to any types of carbohydrates soluble in water.
In culinary terms, the foodstuff known as sugar delivers a primary taste sensation of sweetness. Apart from the many forms of sugar and of sugar-containing foodstuffs, alternative non-sugar-based sweeteners exist, and particularly interest people who have problems with their blood sugar level (such as diabetics) and people who wish to limit their calorie-intake, but while enjoying sweet foods to a greater degree. Both natural and synthetic examples exist with no significant carbohydrate (calorie) content, for instance stevia (a herb) and saccharin (produced from naturally occurring but not necessarily naturally edible substances by inducing appropriate chemical reactions).

Etymology
Originally a luxury, sugar eventually became sufficiently cheap and common to influence standard cuisine. Britain and the Caribbean islands have cuisines where sugar usage has become particularly prominent.
Sugar forms a major element in confectionery and in desserts. Cooks use it as a food preservative as well as for sweetening.

Sugar as food
The sugar-refining industry often uses bone char (calcinated animal bones) for decolorizing. This concerns vegans and vegetarians: about a quarter of the sugar in the US gets processed using bone char as a filter (about half of all sugar from sugar cane; the rest gets processed with activated carbon). As bone char does not get into the sugar, the relevant authorities consider sugar processed this way as parve/kosher.
Vegetarians and vegans may also object to the impact that the burning of the cane fields (a common part of the harvesting practice) has on insects, rats, snakes and other life residing in the fields. The killing of such species parallels the killing of bees in the course of the production of honey, another sweetener that vegans usually avoid.

Concerns of vegetarians and vegans
This article or section is in need of attention from an expert on the subject. WikiProject Health or the Health Portal may be able to help recruit one. If a more appropriate WikiProject or portal exists, please adjust this template accordingly.
Whereas historically rotting teeth once seemed the most prominent health-hazard from the use of sugar, first the growth in the usage of rum (a sugar-cane derivative) and then concerns about type 2 diabetes and obesity have gradually come into prominence.

Sugar and health
Tooth-decay, arguably the most prominent health hazard associated with the use of sugar, can damage teeth in many ways. This results in decay of the tooth.

Tooth-decay
Diabetes, a disease that causes the body to metabolize sugar poorly, occurs when either:
When glucose builds up in the bloodstream, it can cause two problems:
However, while sugars may adversely affect those with diabetes, science has not proven that sugars cause diabetes.

the body's cells ignore insulin, a chemical that allows the metabolizing of sugar (Type 2 diabetes)
the body attacks the cells producing the insulin (Type 1 diabetes)
in the short term, cells become starved for energy because they do not have access to the glucose
in the long term, frequent glucose build-up can damage many of the body's organs, including the eyes, kidneys, nerves and/or heart Diabetes
In the United States of America, a scientific/health debate has started United Nations nutritional advice
On the other hand, the Sugar Association of the United States of America insists that other evidence.

Sugar producers' nutritional advice
Argument continues as to the value of extrinsic sugar (sugar added to food) compared to that of intrinsic sugar (sugars - seldom sucrose - naturally present in food). Adding sugar to food particularly enhances taste, but has drawbacks of boosting calories, among other negative effects on health and physiology.
In the United States of America, sugar has become increasingly evident in food products, as more food-manufacturers add sugar or high-fructose corn-syrup to a surprising variety of consumables. Candy-bars, soft drinks, chips, snacks, fruit-juice, peanut-butter, soups, ice-cream, jams, jellies, yogurt, and many breads have added sugars. Five Alive, for example, which portrays itself as "all natural" and has pictures of five different types of fruit on its label, comprises only 41% fruit juice, having high fructose corn syrup as its prime ingredient.
Many doctors argue that health authorities should classify sugar and high-fructose corn-syrup as food-additives. a category in which Price did not include refined sugar.

Debate
Sugar-cane in its natural form provides a rich source of vitamins and minerals, but refined sugar lacks many nutrients.

Nutrition
Sugar (not only sucrose, but also other varieties such as glucose) may cause some children to become hyperactive — giving rise to the terms "sugar high", "sugar rush" and "sugar buzz". Recent studies financed by the sugar-industry

Sugar and hyperactivity
Table sugar (sucrose) comes from plant sources. Two important sugar crops predominate: sugarcane (Saccharum spp.) and sugar beets (Beta vulgaris), in which sugar can account for 12% to 20% of the plant's dry weight. Some minor commercial sugar crops include the date palm (Phoenix dactylifera), sorghum (Sorghum vulgare), and the sugar maple (Acer saccharum). In the financial year 2001/2002, worldwide production of sugar amounted to 134.1 million tonnes.
The first production of sugar from sugar-cane took place in India. Alexander the Great's companions reported seeing "honey produced without the intervention of bees" and it remained exotic in Europe until the Arabs started cultivating it in Sicily and Spain. Only after the Crusades did it begin to rival honey as a sweetener in Europe. The Spanish began cultivating sugar-cane in the West Indies in 1506 (and in Cuba in 1523). The Portuguese first cultivated sugar-cane in Brazil in 1532.
Most cane-sugar comes from countries with warm climates, such as Brazil, India, China, Australia, Fiji and Mexico. In 2001/2002 developing countries produced over twice as much sugar as developed countries. The greatest quantity of sugar comes from Latin America, the United States, the Caribbean nations, and the Far East.
Beet-sugar comes from regions with cooler climates: northwest and eastern Europe, northern Japan, plus some areas in the United States (including California). In the northern hemisphere, the beet-growing season ends with the start of harvesting around September. Harvesting and processing continues until March in some cases. The availability of processing-plant capacity, and the weather both influence the duration of harvesting and processing - the industry can lay up harvested beet until processed, but frost-damaged beet becomes effectively unprocessable.
The European Union (EU) has become the world's second-largest sugar exporter. The Common Agricultural Policy of the EU sets maximum quotas for members' production to match supply and demand, and a price. Europe exports excess production quota (approximately 5 million tonnes in 2003). Part of this, "quota" sugar, gets subsidised from industry levies, the remainder (approximately half) sells as "C quota" sugar at market prices without subsidy. These subsidies and a high import tariff make it difficult for other countries to export to the EU states, or to compete with the Europeans on world markets.
The United States sets high sugar prices to support its producers, with the effect that many former consumers of sugar have switched to corn syrup (beverage-manufacturers) or moved out of the country (candy-makers).
The cheap prices of glucose syrups produced from wheat and corn (maize) threaten the traditional sugar market. In combination with artificial sweeteners, drink manufacturers can produce very low-cost products.

Production

Main article: Sugarcane Cane

Main article: Sugar beetSugar Beet
Little perceptible difference exists between sugar produced from beet and that from cane. Tests can distinguish the two, and some tests aim to detect fraudulent abuse of EU subsidies or to aid in the detection of adulterated fruit-juice.
The production of sugar results in residues which differ substantially depending on the raw materials used and on the place of production. While cooks often use cane molasses in food, humans find molasses from sugar beet unpalatable, and it therefore ends up mostly as industrial fermentation feedstock, or as animal-feed. Once dried, either type of molasses can serve as fuel for burning.

Cane versus beet
So-called raw sugars comprise yellow to brown sugars made by clarifying the source syrup by boiling and drying with heat, until it becomes a crystalline solid, with minimal chemical processing. Raw beet sugars result from the processing of sugar-beet juice, but only as intermediates en route to white sugar. Types of raw sugar include demerara, muscovado, and turbinado. Mauritius and Malawi export significant quantities of such specialty sugars. Manufacturers sometimes prepare raw sugar as loaves rather than as a crystalline powder, by pouring sugar and molasses together into molds and allowing the mixture to dry. This results in sugar-cakes or loaves, called jaggery or gur in India, pingbian tang in China, and panela, panocha, pile, piloncillo and pão-de-açúcar in various parts of Latin America. In South America, truly raw sugar, unheated and made from sugar-cane grown on farms, does not have a large market-share.
Mill white sugar, also called plantation white, crystal sugar, or superior sugar, consists of raw sugar where the production process does not remove colored impurities, but rather bleaches them white by exposure to sulfur dioxide. Though the most common form of sugar in sugarcane-growing areas, this product does not store or ship well; after a few weeks, its impurities tend to promote discoloration and clumping.
Blanco directo, a white sugar common in India and other south Asian countries, comes from precipitating many impurities out of the cane juice by using phosphatation — a treatment with phosphoric acid and calcium hydroxide similar to the carbonatation technique used in beet-sugar refining. In terms of sucrose purity, blanco directo is more pure than mill white, but less pure than white refined sugar.
White refined sugar has become the most common form of sugar in North America as well as in Europe. Refined sugar can be made by dissolving raw sugar and purifying it with a phosphoric acid method similar to that used for blanco directo, a carbonatation process involving calcium hydroxide and carbon dioxide, or by various filtration strategies. It is then further purified by filtration through a bed of activated carbon or bone char depending on where the processing takes place. Beet sugar refineries produce refined white sugar directly without an intermediate raw stage. White refined sugar is typically sold as granulated sugar, which has been dried to prevent clumping.
Granulated sugar comes in various crystal sizes — for home and industrial use — depending on the application:
Retailers also sell sugar-cubes or lumps for convenient consumption of a standardised amount. Suppliers of sugar-cubes make them by mixing sugar crystals with sugar syrup. Jakub Kryštof Rad invented sugar-cubes in 1841.
Brown sugars come from the late stages of sugar refining, when sugar forms fine crystals with significant molasses-content, or from coating white refined sugar with a cane molasses syrup. Their color and taste become stronger with increasing molasses-content, as do their moisture-retaining properties. Brown sugars also tend to harden if exposed to the atmosphere, although proper handling can reverse this.
The World Health Organisation and the Food and Agriculture Organization of the United Nations expert report (WHO Technical Report Series 916 Diet, Nutrition and the Prevention of Chronic Diseases) defines free sugars as all monosaccharides and disaccharides added to foods by the manufacturer, cook or consumer, plus sugars naturally present in honey, syrups and fruit-juices. This includes all the sugars referred to above. The term distinguishes these forms from all other culinary sugars added in their natural form with no refining at all.
Natural sugars comprise all completely unrefined sugars: effectively all sugars not defined as free sugars. The WHO Technical Report Series 916 Diet, Nutrition and the Prevention of Chronic Diseases approves only natural sugars as carbohydrates for unrestricted consumption. Natural sugars come in fruit, grains and vegetables in their natural or cooked form.

Coarse-grained sugars, such as sanding sugar (nibbed sugar or sugar nibs) find favor for decorating cookies/biscuits and other desserts.
Normal granulated sugars for table use: typically they have a grain size about 0.5 mm across
Finer grades result from selectively sieving the granulated sugar

  • caster (or castor) (0.35 mm), commonly used in baking
    superfine sugar, also called baker's sugar, berry sugar, or bar sugar — favored for sweetening drinks or for preparing meringue
    Finest grades

    • Powdered sugar, 10X sugar, confectioner's sugar (0.060 mm), or icing sugar (0.024 mm), produced by grinding sugar to a fine powder. The manufacturer may add a small amount of anti-caking agent to prevent clumping — either cornstarch (1% to 3%) or tri-calcium phosphate.

      Sugar-cubes close-up

      Culinary sugars
      Biochemists regard sugars as relatively simple carbohydrates. Sugars include monosaccharides, disaccharides, trisaccharides and the oligosaccharides - containing 1, 2, 3, and 4 or more monosaccharide units respectively. Sugars contain either aldehyde groups (-CHO) or ketone groups (C=O), where there are carbon-oxygen double bonds, making the sugars reactive. Most sugars conform to (CH2O)n where n is between 3 and 7. A notable exception, deoxyribose, as its name suggests, has a "missing" oxygen atom. As well as being classified by their reactive group, sugars are also classified by the number of carbons they contain. Derivatives of trioses (C3H6O3) are intermediates in glycolysis. Pentoses (5 carbon sugars) include ribose and deoxyribose, which are present in nucleic acids. Ribose is also a component of several chemicals that are important to the metabolic process, including NADH and ATP. Hexoses (6 carbon sugars) include glucose which is a universal substrate for the production of energy in the form of ATP. Through photosynthesis plants produce glucose, which has the formula C6H12O6, and then convert it for storage as an energy reserve in the form of other carbohydrates such as starch, or (as in cane and beet) as sucrose.
      Many pentoses and hexoses can form ring structures. In these closed-chain forms, the aldehyde or ketone group is not free, so many of the reactions typical of these groups cannot occur. Glucose in solution exists mostly in the ring form at equilibrium, with less than 0.1% of the molecules in the open-chain form.
      Monosaccharides in a closed-chain form can form glycosidic bonds with other monosaccharides, creating disaccharides (such as sucrose) and polysaccharides (such as starch). Enzymes must hydrolyse or otherwise break these glycosidic bonds before such compounds will metabolise. After digestion and absorption the principal monosaccharides present in the blood and internal tissues are: glucose, fructose, and galactose.
      The prefix "glyco-" indicates the presence of a sugar in an otherwise non-carbohydrate substance. Note for example glycoproteins, proteins to which one or more sugars are connected.
      Simple sugars include fructose, glucose, galactose, maltose, lactose and mannose. Disaccharides occur most commonly as sucrose (cane or beet sugar - made from one glucose and one fructose), lactose (milk sugar - made from one glucose and one galactose) and maltose (made of two glucoses). These disaccharides have the formula C12H22O11.
      Hydrolysis can convert sucrose into a syrup of fructose and glucose, producing invert sugar. This resulting syrup is sweeter than the original sucrose, and is useful for making confections because it does not crystalize as easily and thus produces a smoother finished product.

      Chemistry
      Sugarcane, a tropical grass, probably originated in New Guinea. During prehistoric times its culture spread throughout the Pacific Islands and into India. By 200 BC producers in China had begun to grow it too. Westerners learned of sugarcane in the course of military expeditions into India. Nearchos, one of Alexander the Great's commanders, described it as "a reed that gives honey without bees".
      Originally, people chewed the cane raw to extract its sweetness. The process of making sugar by evaporating juice from sugarcane developed in India around 500 BC. In South Asia, the Middle East and China, sugar became a staple of cooking and desserts.
      Early refining methods involved grinding or pounding the cane in order to extract the juice, and then boiling down the juice or drying it in the sun to yield sugary solids that resembled gravel. The Sanskrit word for "sugar" (sharkara), also means "gravel". Similarly, the Chinese use the term "gravel sugar" (Traditional Chinese: 砂糖) for table sugar.

      History
      The Arabs and Berbers introduced sugar to Western Europe when they conquered the Iberian peninsula in the 8th century AD. Crusaders also brought sugar home with them after their campaigns in the Holy Land, where they encountered caravans carrying "sweet salt". Crusade chronicler William of Tyre described sugar as "very necessary for the use and health of mankind."
      The 1390s saw the development of a better press, which doubled the juice obtained from the cane. This permitted economic expansion of sugar plantations to Andalucia and to the Algarve. The 1420s saw sugar-production extended to the Canary Islands, Madeira and the Azores.
      In August 1492 Christopher Columbus stopped at Gomera in the Canary Islands, for wine and water, intending to stay only four days. He became romantically involved with the Governor of the island, Beatrice de Bobadilla, and stayed a month. When he finally sailed she gave him cuttings of sugarcane, which became the first to reach the New World.
      The Portuguese took sugar to Brazil. Hans Staden, published in 1555, writes that by 1540 Santa Catalina Island had 800 sugar-mills and that the north coast of Brazil, Demarara and Surinam had another 2000. Approximately 3000 small mills built before 1550 in the New World created an unprecedented demand for cast iron gears, levers, axles and other implements. Specialist trades in mold making and iron casting were inevitably created in Europe by the expansion of sugar. Sugar mill construction is the missing link of the technological skills needed for the Industrial Revolution that is recognized as beginning in the first part of the 1600s.
      After 1625 the Dutch carried sugarcane from South America to the Caribbean islands — from Barbados to the Virgin Islands. The years 1625 to 1750 saw sugar become worth its weight in gold. Prices declined slowly as production became multi-sourced, especially through British colonial policy. Sugar-production increased in mainland North American colonies, in Cuba, and in Brazil. African slaves became the dominant plantation-workers as they proved resistant to the diseases of malaria and yellow fever. (European indentured servants remained in shorter supply, susceptible to disease and overall forming a less economic investment. European diseases such as smallpox had reduced the numbers of local Native Americans.) But replacement of Native American with African slaves also occurred because of the high death-rates on sugar-plantations. The British West Indies imported almost 4 million slaves, but had only 400 000 Blacks left after slavery ended.
      With the European colonization of the Americas, the Caribbean became the world's largest source of sugar. These islands could supply sugar-cane using slave-labor and produce sugar at prices vastly lower than those of cane sugar imported from the East. Thus the economies of entire islands such as Guadaloupe and Barbados became based on sugar-production. By 1750 the French colony known as Saint-Domingue (subsequently the independent country of Haiti) became the largest sugar-producer in the world. Jamaica too became a major producer in the 18th century. Sugar-plantations fueled a demand for manpower; between 1701 and 1810 ships brought nearly one million slaves to work in Jamaica and in Barbados.
      During the eighteenth century, sugar became enormously popular and the sugar-market went through a series of booms. The heightened demand and production of sugar came about to a large extent due to a great change in the eating habits of many Europeans. For example, they began consuming jams, candy, tea, coffee, cocoa, processed foods, and other sweet victuals in much greater numbers. Reacting to this increasing craze, the islands took advantage of the situation and began harvesting sugar in extreme amounts. In fact, they produced up to ninety percent of the sugar that the western Europeans consumed. Of course some islands were more successful than others when it came to producing the product. For instance, Barbados and the British Leewards can be said to have been the most successful in the production of sugar because it counted for 93% and 97% respectively of each island's exports.
      Planters later began developing ways to boost production even more. For example, they began using more manure when growing their crops. They also developed more advanced mills and began using better types of sugar-cane. Despite these and other improvements, the price of sugar reached soaring heights, especially during events such as the revolt against the Dutch and the Napoleonic Wars. Sugar remained in high demand, and the islands' planters knew exactly how to take advantage of the situation.
      As Europeans established sugar-plantations on the larger Caribbean islands, prices fell, especially in Britain. By the eighteenth century all levels of society had become common consumers of the former luxury product. At first most sugar in Britain went into tea, but later confectionery and chocolates became extremely popular. Suppliers commonly sold sugar in solid cones and consumers required a sugar nip, a pliers-like tool, to break off pieces.
      Sugar-cane quickly exhausts the soil in which it grows, and planters pressed larger islands with fresher soil into production in the nineteenth century. In this century, for example, Cuba rose to become the richest land in the Caribbean (with sugar as its dominant crop) because it had the only major island land-mass free of mountainous terrain. Instead, nearly three-quarters of its land formed a rolling plain — ideal for planting crops. Cuba also prospered above other islands because Cubans used better methods when harvesting the sugar crops: they adopted modern milling-methods such as water-mills, enclosed furnaces, steam-engines, and vacuum-pans. All these technologies increased productivity.
      After the Haïtian Revolution established the independent state of Haiti, sugar production in that country declined and Cuba replaced Saint-Domingue as the world's largest producer.
      Long established in Brazil, sugar-production spread to other parts of South America, as well as to newer European colonies in Africa and in the Pacific, where it became especially important in Fiji. In Colombia, the planting of sugar started very early on, and entrepreneurs imported many African slaves to cultivate the fields. The industrialization of the Colombian industry started in 1901 with the establishment of the first steam-powered sugar mill by Santiago Eder.

      Cane sugar outside Asia
      In 1747 the German chemist Andreas Marggraf identified sucrose in beet root. This discovery remained a mere curiosity for some time, but eventually Marggraf's student Franz Achard built a sugarbeet-processing factory at Cunern in Silesia, under the patronage of King Frederick William III of Prussia (reigned 1797 - 1840). While never profitable, this plant operated from 1801 until it suffered destruction during the Napoleonic Wars (ca 1802 - 1815).
      Napoleon, cut off from Caribbean imports by a British blockade and at any rate not wanting to fund British merchants, banned sugar imports in 1813. The beet-sugar industry that emerged in consequence grew, and today, sugar-beet provides approximately 30% of world sugar production.
      While no longer grown by slaves, sugar from developing countries has an on-going association with workers earning minimal wages and living in extreme poverty.
      In the developed countries, the sugar industry relies on machinery, with a low requirement for manpower. A large beet-refinery producing around 1,500 tonnes of sugar a day needs a permanent workforce of about 150 for 24-hour production.

      The rise of beet sugar
      Beginning in the late 18th century, sugar production became increasingly mechanized. The steam engine first powered a sugar mill in Jamaica in 1768, and soon thereafter, steam replaced direct firing as the source of process heat.
      In 1813 the British chemist Edward Charles Howard invented a method of refining sugar that involved boiling the cane juice not in an open kettle, but in a closed vessel heated by steam and held under partial vacuum. At reduced pressure, water boils at a lower temperature, and this development both saved fuel and reduced the amount of sugar lost through caramelization. Further gains in fuel efficiency came from the multiple-effect evaporator, designed by the African-American engineer Norbert Rillieux perhaps as early as the 1820s, although the first working model dates from 1845. This system consisted of a series of vacuum pans, each held at a lower pressure than the previous one. The vapors from each pan were used to heat the next, and little heat wasted. Today, multiple-effect evaporators are employed widely in many industries for evaporating water.
      The process of separating the sugar from the molasses also received mechanical attention: David Weston first applied the centrifuge to this task in Hawaii in 1852.

      Mechanization
      See also International Commission for Uniform Methods of Sugar Analysis

      Measuring sugar
      Scientists use degrees Brix (symbol °Bx), introduced by Antoine Brix, as units of measurement of the mass ratio of dissolved substance to water in a liquid. A 25 °Bx sucrose solution has 25 grams of sucrose sugar per 100 grams of liquid. Or, to put it another way, 25 grams of sucrose sugar and 75 grams of water exist in the 100 grams of solution.
      An infrared Brix sensor measures the vibrational frequency of the sugar molecules, giving a Brix degrees measurement. This does not equate to Brix degrees from a density or refractive index measurement because it will specifically measure dissolved sugar concentration instead of all dissolved solids. When using a refractometer, one should report the result as "refractometric dried substance" (RDS). One might speak of a liquid as having 20 °Bx RDS. This refers to a measure of percent by weight of total dried solids and, although not technically the same as Brix degrees determined through an infrared method, renders an accurate measurement of sucrose content, since sucrose in fact forms the majority of dried solids. The advent of in-line infrared Brix measurement sensors has made measuring the amount of dissolved sugar in products economical using a direct measurement.

      Dissolved sugar content
      Technicians usually measure the purity of sugar, i.e. the sucrose content, by polarimetry — the measurement of the rotation of plane-polarized light by a solution of sugar.

      Sugar purity
      Historically one of the most widely-traded commodities in the world, sugar accounts for around 2% of the global dry cargo market. International sugar prices show great volatility, ranging from around 3 to over 60 cents per pound in the past 50 years. Of the world's 180-odd countries, around 100 produce sugar from beet or cane, a few more refine raw sugar to produce white sugar, and all countries consume sugar. Consumption of sugar ranges from around 3 kilogrammes per person per annum in Ethiopia to around 40 kg/person/yr in Belgium. Consumption per capita rises with income per capita until it reaches a plateau of around 35kg per person per year in middle-income countries.
      Many countries subsidize sugar-production heavily. The European Union, the United States, Japan and many developing countries subsidize domestic production and maintain high tariffs on imports. Sugar prices in these countries have often exceeded prices on the international market by up to three times; today, with world market sugar futures prices currently strong, such prices typically exceed world prices by two times.
      Within international trade bodies, especially in the World Trade Organization, the "G20" countries led by Brazil have long argued that because these sugar markets essentially exclude cane-sugar imports, the G20 sugar-producers receive lower prices than they would under free trade. While both the European Union and United States maintain trade agreements whereby certain developing and less-developed countries (LDCs) can sell certain quantities of sugar into their markets, free of the usual import tariffs, countries outside these preferred trade régimes have complained that these arrangements violate the "most favoured nation" principle of international trade.
      In 2004, the WTO sided with a group of cane-sugar exporting nations (led by Brazil and Australia) and ruled the EU sugar-régime and the accompanying ACP-EU Sugar Protocol (whereby a group of African, Caribbean, and Pacific countries receive preferential access to the European sugar market) illegal. In response to this and to other rulings of the WTO, and owing to internal pressures on the EU sugar regime, the European Commission proposed on 22 June 2005 a radical reform of the EU sugar régime, cutting prices by 39% and eliminating all EU sugar exports. The African, Caribbean, Pacific and least developed country sugar-exporters reacted with dismay to the EU sugar proposals, arguing for a fairer reform of the EU régime which would foster development and contribute meaningfully to the achievement of the Millennium Development Goals. On 25 November 2005 the Council of the EU agreed to cut EU sugar prices by 36% as from 2009. It now seems
      Small quantities of sugar, especially specialty grades of sugar, reach the market as 'fair trade' commodities; the fair-trade system produces and sells these products with the understanding that a larger-than-usual fraction of the revenue will support small farmers in the developing world. However, whilst the Fairtrade Foundation offers a premium of USD 60.00 per tonne to small farmers for sugar branded as "Fairtrade", government schemes such the U.S. Sugar Program and the ACP Sugar Protocol offer premiums of around USD 400.00 per tonne above world market prices.

      Sugar economics

      Biobutanol
      Brown sugar
      Brix
      Palm sugar
      Caramel
      Corn syrup
      Fermentation
      Glycomics
      Golden syrup
      Holing cane
      Natural brown sugar
      Stevia, a herb many times sweeter than pure sugar
      Sugar plantations in the Caribbean
      Sugar loaf
      Sugar substitute
      List of unrefined sweeteners
      Rock candy
      Barley sugar See also

      History and culture

      Cook's Thesaurus: Sugar (www.foodsubs.com) Food

      Expert Report on diet and chronic disease (WHO/FAO)
      Center for Science in the Public Interest sugar-labeling campaign Health

      Ethical Sugar NGO
      The politics of sugar
      Harvesting Poverty: America's Sugar Daddies Social and environmental

      Wide range of information about sugars, from the Canadian Sugar Institute, a non-profit trade association of Canada's manufacturers of refined sugar
      Least Developed Countries sugar site
      African, Caribbean and Pacific sugar exporters
      Sugar Traders Association of the UK
      European Union sugar-régime proposals
      WTO ruling on the EU sugar-régime
      U.S. Sugar Import Program
      Sugar Association of London
      Sugar Statistics at Chronos Shipping website
      Sample trade-sugars Trade

      "The Myth of the Sugar Buzz" article from Skepticism.Net Chemical

      A C Hannah, The International Sugar Trade, ISBN 1-85573-069-3
      William Dufty, Sugar Blues, ISBN 0-446-34312-9

Monday, October 15, 2007

Blocker corporation
A '"blocker" corporation is a C Corporation that can be used to protect tax exempt individuals. In private equity or with hedge funds in particular, a problem can arise when a fund contains foreign or tax exempt investors, who are not subject to US tax. Most private equity funds and hedge funds are composed as limited partnerships, or as LLC's (Limited Liability Company) which for tax purposes is considered a Limited Partnership, unless the fund formally elects to be taxed as a corporation. This allows the fund itself to avoid taxation, as each of the individual investors is taxed as a partner with respect to the share of profits attributable to the partner's personal equity interest. By comparison, a fund set up as a "C" Corporation would be subject to tax for its earnings, and then the limited partners would be subject to tax when they received their profit in the form of dividends distributed by the corporation. Thus, the LLC or LP format allows a fund to avoid double taxation.
When there are tax exempt investors in a fund, they are not subject to US income tax, but are still required to declare and pay taxes on "Unrelated Business Taxable Income" or "UBTI". For tax exempt investors, dividends, royalties, rents, capital gains and interest income are not considered "UBTI", but any money earned from conduct unrelated to the entity's tax exempt purpose is considered "UBTI". Foreign investors, similarly, are not generally subject to U.S. income tax. However, if a foreign investor conducts a trade or business within the United States, it is required to file a U.S. tax return and pay taxes on the same terms as a U.S. individual or corporation. In both cases, because partners are treated as earning their share of the partnership's income on a flow-through basis, they are treated as engaged in a U.S. trade or business or an unrelated business to the extent that the partnership is so engaged. To combat this, a private equity fund can set up an offshore feeder corporation known as a "Blocker" corporation. The foreign and tax exempt investors can invest through the "blocker" corporation, and then they are no longer personally considered to be partners, as it is the foreign corporation that is the owner of equity in the fund. For tax exempt investors, their share of the "blocker" corporation is considered dividend income, and thus they are not subject to tax. Foreign investors similarly avoid US trade or business income tax (although they will be subject to tax in their home country on any dividends received). The offshore blocker corporation itself is subject, however, to tax on its share of the partnership's income.

Sunday, October 14, 2007

Hiram Walker
Hiram Walker (4 July 181612 January 1899) was an American grocer and distiller, and the eponym of the famous distillery in Windsor, Ontario, Canada directly across from Detroit, Michigan. Walker founded the distillery in 1858 in what was then Walkerville, Ontario. Walker was born July 4, 1816 in East Douglas, Massachusetts, and moved to Detroit in the mid-1830s. He purchased land across the river, just east of what was Windsor, Ontario, and established a distillery on the banks of the Detroit River. Walker began selling his whiskey as Hiram Walker's Club Whiskey. It became very popular and American distillers became angry, and forced the US Government to pass a law requiring that all foreign whiskeys state their country of origin on the label. This move backfired; Hiram Walker's Canadian Club Whiskey became more popular.
He established and maintained the company town that sprang up around his distillery. He exercised planning and control over every facet of the town, from public works to religious services to police and fire. He once opened a church for his workers and then quickly closed it when the preacher decided to bite the hand that fed him by preaching about the "evils of alcohol".
Mr. Walker was also a cattle breeder and was party to a famous contracts case known as "The Pregnant-Cow Case." (Sherwood v. Walker, 33 N.W. 919 (Mich. 1887).) He agreed with Theodore Sherwood, a banker, to sell him a cow of distinguished ancestry known as Rose 2d of Aberlone. The price was $80, both parties believing Rose to be sterile. When Walker discovered that she was pregnant and worth between $750 and $1,000, he refused to deliver her. Sherwood sued and prevailed in the trial court, but lost on appeal. This case illustrates the contract law rules of rescission of contract by mutual mistake. Because both parties believed they were contracting for a sterile cow, there was a mutual mistake of fact, and therefore ground for rescission.
Hiram Walker died in Detroit, Michigan, January 12, 1899. He is buried at Elmwood Cemetery in Detroit.
The Hiram Walker & Sons Distillery remained in the Walker Family until 1926 when it was sold to Harry C. Hatch. Canadian Club Whisky is produced to this day at the distillery site Mr. Walker founded. The company has gone through several versions of ownership and is now owned by French firm Pernod Ricard as a result of that company's acquisition of Allied Domecq. The direct descendents are of the Franklin MacFie Walker Family.

Saturday, October 13, 2007


Gerard David Schine, better known as G. David Schine (September 11, 1927 - June 19, 1996), received national attention when he became a central figure in the Army-McCarthy Hearings of 1954.

G. David SchineG. David Schine Anti-communism and Army-McCarthy
After the hearings, Schine left politics and declined to comment on the episode for the rest of his life. He remained active in the private sector as a businessman and entrepreneur, working in the hotel, music, and film industries, and was a founding member of the Young Presidents' Organization. Schine was executive producer of the 1971 film The French Connection, which was nominated for eight Academy Awards and won five, including Best Picture. Shortly afterwards, Schine was involved with chart topping music that achieved Billboard gold and platinum and Cash Box #1, by The DeFranco Family. Schine's company Schine Music would also provide songs to Lou Rawls and Bobby Sherman, among others. A musician himself, Schine had music he had written published and at one point guest conducted the Boston Pops Orchestra for Arthur Fiedler. Schine's post production video house in Hollywood, Studio Television Services, handled clients such as HBO, Disney, Orion, and MGM/UA. His publicly traded research and development company High Resolution Sciences for years endeavored to bring high definition to broadcast television.
Schine was killed in 1996 at the age of 68 in a private airplane accident in Los Angeles, California. His wife and one son were with him on the plane and all three perished.

After Army-McCarthy
Following Schine's death, Tony Kushner wrote a one act comedy play, G. David Schine in Hell. The play takes place on June 19, 1996 (the day Schine died), and portrays Schine as he arrives in hell, where he is reunited with Roy Cohn, Richard Nixon, Whittaker Chambers, and J. Edgar Hoover.

Friday, October 12, 2007


The Council of the European Union (informally, the Council of Ministers or just the Council) is one of the two legislative institutions of the European Union, the other being the European Parliament. This Council should be distinguished from the European Council and the Council of Europe.
The Council, together with the Parliament, form the highest legislative body within the Union, but only within the competencies of the European Community. It is composed of 27 national ministers (one per state), the exact minister depending upon the area being addressed; for example agriculture ministers meet to discuss matters regarding agriculture. The ministers are accountable to their national electorates and together serve the second largest democratic electorate in the world (492 million).

History
The Parliament and Council are essentially two chambers in the bicameral legislative branch of the European Union, with legislative power being officially distributed equally between both chambers. However there are some differences from national legislatures; for example, neither the Parliament or Council have the power to initiate community legislation (but they can propose), a power uniquely reserved for the Commission.

ensure coordination of the general economic policies of the Member States,
have power to take decisions,
confer on the Commission, in the acts which the Council adopts, powers for the implementation of the rules which the Council lays down. The Council may impose certain requirements in respect of the exercise of these powers. The Council may also reserve the right, in specific cases, to exercise directly implementing powers itself. The procedures referred to above must be consonant with principles and rules to be laid down in advance by the Council, acting unanimously on a proposal from the Commission and after obtaining the opinion of the European Parliament. Powers and functions
There are various legislative procedures used in the Union. The Codecision procedure is the most common (43 areas) which gives the Parliament and Council equal powers, in that legislation can be amended or rejected by both chambers. However older procedures, still used in some cases, give the Council greater power.

Legislative and budgetary authority

Organisation

Main article: Presidency of the Council of the European Union Presidency
Legally speaking, the Council is a single entity, but it is in practice divided into several different councils that meet in Brussels, each dealing with a different functional area. Each council is attended by a different type of minister. Thus, for example, meetings of the Council in its Agriculture and Fisheries formation are attended by the agriculture ministers of each member state. They meet irregularly except for the three major configurations (top three below) which meet once a month. There are currently nine formations
Agriculture and Fisheries: One of the oldest configurations, this brings together once a month the ministers for agriculture and fisheries, and the commissioners responsible for agriculture, fisheries, food safety, veterinary questions and public health matters.
Justice and Home Affairs Council (JHA): This configuration brings together Justice ministers and Interior Ministers of the Member States. Includes civil protection.
Employment, Social Policy, Health and Consumer Affairs Council (EPSCO): Composed of employment, social protection, consumer protection, health and equal opportunities ministers.
Competitiveness: Created in June 2002 through the merging of three previous configurations (Internal Market, Industry and Research). Depending on the items on the agenda, this formation is composed of ministers responsible for areas such as European affairs, industry and scientific research. Includes Tourism.
Transport, Telecommunications and Energy: Also created in June 2002, through the merging of three policies under one configuration, and with a composition also varying according to the specific items on its agenda. This formation meets approximately once every two months.
Environment: Composed of environment ministers, who meet about four times a year.
Education, Youth and Culture (EYC): Composed of education, culture, youth and communications ministers, who meet around three or four times a year. Includes audiovisual issues. Configurations
The European Council is similar to a configuration of the Council, it operates in the same way and shares the same Presidency system but is composed of the national leaders (heads of government or state). The body's purpose is to define the general "impetus" of the Union.

European Council
The General Secretariat of the Council provides the continuous infrastructure of the council, carrying out preparation for meetings, draft reports, translation, records, documents, agendas and assisting the presidency.

Council of the European Union Civil Service
Main article: Voting in the Council of the European Union
The Council is composed of national ministers for the relevant topic of discussion, with the ministers representing their states. Under qualified majority, different states have different voting weights, as follows (of a total of 345 votes);

29 votes: Germany, France, Italy and the United Kingdom.
27 votes: Spain and Poland.
14 votes: Romania.
13 votes: Netherlands.
12 votes: Belgium, the Czech Republic, Greece, Hungary and Portugal.
10 votes: Austria, Bulgaria and Sweden.
7 votes: Denmark, Ireland, Lithuania, Slovakia and Finland.
4 votes: Cyprus, Estonia, Latvia, Luxembourg and Slovenia.
3 votes: Malta. Political parties
Within the Council's debates, delegates may speak in any of the 23 official EU languages. Official documents are also translated into Catalan/Valencian, Basque and Galician.

Public access
By a decision of the European Council at Edinburgh in December 1992, the Council has its seat in Brussels but in April, June and October, it holds its meetings in Luxembourg.

Future of the Council

Silence procedure
Location of European Union institutions

Thursday, October 11, 2007

Stella Obasanjo
Stella Ọbasanjọ (14 November 1945 - 23 October 2005) was the First Lady of Nigeria from 1999 until her death. She was the wife of Nigerian president Oluṣẹgun Ọbasanjọ and the daughter of Christopher Abebe, a former UAC Nigeria Chairman. She hailed from Irruepken in Esan West local government area in Edo State, Nigeria. She was an Esan woman by ethnic origin and she was not the First Lady in 1976 when Ọbasanjọ was military head of state.

Stella Obasanjo Human rights
Stella Ọbasanjọ died of complications from an operation at a private health clinic in the southern Spanish resort town of Puerto Banus, near Marbella, on 23 October 2005, where she had undergone plastic surgery.

Wednesday, October 10, 2007


The Takeda Foundation, is an organisation based in Japan. In 2001 it launched an annual awards program, which presented awards accompanied by 100 million yen under the categories social/economic well-being, individual/humanity well-being, and world environmental well-being.

Takeda Awards Winners

2001
The technical achievement honored by the Takeda Award 2001 Techno-Entrepreneurial Achievements for Social/Economic Well-Being was "the origination and the advancement of open development models for system software - open architecture, free software and open source software."

Social/Economic Well-Being
The technical achievement honored by the Takeda Award 2001 Techno-Entrepreneurial Achievements for Individual/Humanity Well-Being was "development of a large-scale genome sequencing system by establishing 'the whole genome shotgun strategy' that utilizes modularized data acquisition system and high-throughput DNA sequencers."

Individual/Humanity Well-Being
The technical achievement honored by the Takeda Award 2001 Techno-Entrepreneurial Achievements for World Environmental Well-Being is "the development and promotion of the Ecological Rucksacks and Material Input per Unit Service (MIPS) concepts, as measures of the ecological stress of products and services."
The awards were suspended in 2003 due to financial constraints, with the hope that they could be restarted if/when the Takeda Foundation's financial situation improves. [1]
As well as the above awards, also in 2001 and 2002 they presented the Techno-Entrepreurship Award, and the Takeda Scholarship Award.

Takeda Awards World/Environmental Well-Being

Individual/Humanity Well-Being